Mechanical Methods for Restoration and Fuels Reduction in Longleaf Pine Flatwoods

Jesse Kreye, Post Doctoral Scholar School of Forestry Mississippi State University Leda Kobziar, Associate Professor of Fire Science School of Forest Resources and Conservation University of Florida

David Godwin, UF Alan Long, UF Wayne Zipperer, USFS Ivan Green, USFS Susan Kent, USFS Peter Myers, USFS Shawn Kinghorn, USFS Byron Hart, USFS Mike Camp, NEON ARRA

Fire Exchange

New?

- Mowing has been used to create fuel breaks and buffers for as long as machines existed
- Before that, the original "mastication" machines...

- Both nationally and regionally, the scale and extent of their use is increasing greatly, which changes the scale and extent of their effects
- New quantification of mechanical treatment effects on fuelbeds and whether they mitigate wildfire risk

Mechanical in lieu of / before fire

Increasing Populations = Increasing WUI Liability concerns Rx Fire and Smoke Issues Initial stage of

restoration pursuits (long unburned areas)

Ideally, followed by fire

Increasingly conducted in Florida's National Forests and private lands in the future?

Counties Designated "Nonattainment"

for Clean Air Act's National Ambient Air Quality Standards (NAAQS) *

* The National Ambient Air Quality Standards (NAAQS) are health standards for Carbon Monoxide, Lead (1978 and 2008), Nitrogen Dioxide, 8-hour Ozone (1997 and 2008), Particulate Matter (PM-10 and PM-2.5 (1997 and 2006)), and Sulfur Dioxide.(1971 and 2010)

Mechanical Treatment Objectives

- Reduce vertical fuel continuity and height
 - Convert into horizontal fuelbeds
 - Reduce small diameter trees
- Reduce wildfire risk and mitigate behavior
- Initiate restoration in long unburned locations
 - Reduce fire behavior when reintroduced

What we already know

- Lack of or infrequent (>4 yr FRI) fire will lead to litter and duff fuel build-up (Osceola Long-Term Rx Fire Demonstration Plots, Outcalt and Wade, 2004)
- Mechanical methods vary greatly, but most cost between \$150-\$350/acre, vs. prescribed fire ~\$15-\$100/ acre
- Restoration of native ground cover (e.g. forbs, grasses) requires successive treatments, or additive treatments (mech. + fire; *Rummer*, *Outcalt, Brockway 2002*)
- Regrowth following mech. treatments can double understory cover (e.g. oaks, vines, shrubs) if not re-treated within 2 growing seasons in longleaf pine stands (*Brockway et al. 2009*) (? True elsewhere?)

Persisting Research & Management Questions

- How can mechanical and fire treatments be used to meet management objectives?
- Do treatments reduce wildfire risk?
 - Potential (predicted) and actual (prescribed) fire behavior
 - Are combined treatments most effective?
 - How long do effects last?
- Other effects of mechanical and combined treatments
 - Reductions in tree mortality where fire is being reintroduced?
 - Impacts on understory composition (restoration)?
 - Impacts on growth rates of remaining trees (2015)
 - C budget/ soil nutrients, fertility
 - Spread of invasive species from WUI into forest

Pre-Treatment

Osceola National Forest

J. or

Repeat photos taken before (left) and after (right) mechanical mastication in pine flatwoods.

Post-Treatment

Study locations- three areas

113 Total plots

0002255 Kilometers

Buffer (2009), Areal Treatment (2010)

Split block demonstration sites

- 2 ha units
- 3 replicates per treatment, 3 plots per rep. = 9 per treatment
- Soil Respiration study sites (D. Godwin)
- Long term monitoring
- Remeasuring
 2014-2015

0.00.53 Kilometers

Key issues addressed

• Efficacy of Treatments

- Fire hazard reduction
 - Longevity
- Restoration
 - Reducing palmetto/increasing grasses
 - Restoring frequent fire without damaging overstory
 - Soil impacts?
- Understanding what drives treatment effects
 - Shrubs? Downed woody debris? Litter?

Pre-Treatment

Post-Treatment

Repeat photos taken before (left) and after (right) mechanical mastication in pine flatwoods.

Treatment prescriptions included mowing all shrubs and small-diameter trees (<20 cm) and the resulting debris to be left on site.

Immediate Effects of Mowing on trees, shrubs, fuels

Overstory, understory, and surface fuel characteristics of a 500 ha mowing treatment in palmetto/gallberry pine flatwoods of north-central Florida, USA. Surface fuels sampled non-destructively (planar intercept method). Values in parentheses are standard errors.

	Trees					Shrubs ^a		
	Density (trees ha ⁻¹)	BA ^d (m ² ha ⁻¹)	QMD ^d (cm)	Height (m)	CBH ^d (m)	Density (ind m ⁻²)	Height (m)	Biomass (Mg ha ⁻¹)
Pre-treatment Post-treatment ^b	358 (39) ^A 277 (38) ^A	18.8 (2.3) ^A 18.6 (2.4) ^A	25.8 (1.0) ^A 29.8 (1.2) ^B	16.7 (0.9) ^A 20.7 (0.9) ^B	12.0 (0.8) ^A 14.7 (0.7) ^B	4.2 (0.5) ^A 0.6 (0.2) ^B	1.12 (0.02) ^A 0.75 (0.14) ^B	3.68 (0.49) ^A 0.24 (0.08) ^B
	Surface fuel	loading						
	1 h	10 h	100 h	1000	h-S	1000 h-R	Litter	Duff
		$(Mg ha^{-1})$						
Pre-treatment Post-treatment ^b	1.7 (0.3) ^A 2.7 (0.5) ^B	1.4 (0.1) ^A 3.1 (0.5) ^B	0.3 (0.1) 0.6 (0.3)	A 0.3 (A 0.4 (0.3) [^] 0.2) [^]	0.2 (0.2) ^A 0.3 (0.2) ^A	9.0 (0.9) ^A 13.4 (1.2) ^B	42.0 (3.6) ^A 42.0 (4.3) ^A
		Fue	el depth					
		FW	/D ^c		Litt	er		Duff
		(cn	n)					
Pre-treatment Post-treatment ^b		7.2 7.3	$(1.7)^{A}$ $(0.9)^{A}$		7.8 6.0	(0.8) ^A (0.5) ^B		5.8 (0.5) ^A 3.8 (0.4) ^B

Note: Values sharing letters (superscripts A and B) within columns are not statistically different ($\alpha = 0.05$).

^a Shrubs >0.5 m in height.

^b ca. 2 mos following treatment.

^c Fine woody debris (1 h, 10 h, and 100 h fuels).

^d Basal area (BA), quadratic mean diameter (QMD), crown base height (CBH).

Kreye, Kobziar, and Camp. Immediate and short-term response of understory fuels following mechanical mastication in a pine flatwoods site. Forest Ecology and Management 313 (2014) 340–354

Post- Mowing: Percent Ground Cover: Major functional groups

Burned Feb 23, 2011 (Unmowed)

2 Days Post-Burn

(6 Months Post-Mowing)

Mow + Burn

<u>Rebar</u>

★ Litter/Duff Pins (consumption)

<u>Fuel Moisture</u>

10N:	
Burn	28 (6)%
Mow + Burn	21 (7)%
Litter (1h):	
Burn	18 (2)%
Mow + Burn	12 (1)%
Live:	
Burn	110 (3) %
Mow + Burn	117 (3)%

Pre burn characteristics Winter Burn: Feb 23, 2011 (6 mos post-mastication) Wind: 1-5 km·h⁻¹ RH: 47-62% Temp: 17-24 °C (63-75°F)

Demonstration Site Burning

Burn only vs. mow + burn

Burned Feb 23, 2011 (Unmowed)

2 Days Post-Burn

(6 Months Post-Mowing)

Mow + Burn

Fire Behavior

Drivers of Fire Behavior: it's all about shrubs

Palmetto recovery post burn vs. mow + burn

Overall shrub height- driver of fire behavior

Groundcover- functional groups

7 months post-burn & 1 year post-mowing

Percent Cover of Groundcover, Litter, and Bare Ground (shrubs <0.5m)

Soils

<u>Soil Nutrients</u> (pre-burn & 1 yr post-burn)

- •BD, pH, CEC
- •Exchangeable K, Mg, Ca
- •Base Saturation of K, Mg, Ca
- •Available P
- •Total C, P, N
- •Organic Matter

*No Treatment Effects

Burn only vs. mow + burn

Tree Damage

Summer Burns: vs winter conditions

Table 4-3 Comparison of burning conditions (weather, overstory, and fuels) between a summer and winter burn in masticated palmetto/gallberry pine flatwoods of northern Florida, USA.

				Burning Co	nditions		
	Burn Date	Temp °C	RH %	Windspeed km [·] hr ⁻¹	Litter Moisture %	KBDI	
Summer	28 Jul 2010	31-34	61-76	1.6-7.2	14.7 (1.1) ^a	425	
Winter	23 Feb 2011	23-24	47-49	1.6-2.7	12.1 (0.6) ^{a≠}	107	
				_			
				Overst	tory		
	Tree Density	Basal Are	ea	QMD	Height	CBH	
	tph	m^2		cm	m	т	
Summer	290 (27) ^a	23.1 (3.0) ^a	32.0 (2.6) ^a	23.3 (0.9) ^a	15.8 (0.8) ^a
Winter	307 (64) ^a	18.9 (4.4) ^a	27.8 (1.6) ^a	21.0 (0.7) ^{a∓}	14.7 (0.9) ^a
				Understor	y Fuels		
	Shrub Height ¹	S	hrubs	Ma:ha	Shrub Foliage		
Summer	69 (7) ^a	0.	.9 (0.5) ^a		0.5 (0.2) ^a		
Winter	58 (13) ^a	0.	.6 (0.3) ^a		0.4 (0.2) ^a		
				Surface	<u>Fuels</u>		
	Litter Depth	Duff Dep	th Litter	Duff	1 h	10 h	100 h
_	CN	n			Mg ha 1		
Summer	4.9 (0.7) ^a	5.3 (0.8)	10.9	(1.6] 58.8 (9.4) ^a 4.1 (1.0) ^a	6.6 (0.6) ^a	2.5 (1.1) ^a
Winter	6.0 (0.4) ^a	3.5 (0.6)°	13.4	(0.9) ^a 38.8 (6.5) ^a 1.1 (0.2) ^a	2.1 (0.3) ⁶	<u>1.1 (0.6)</u> °
Note: Values sharir	Note: Values sharing letters within columns are not statistically different (Tukey-Kramer Test, α=0.05), * indicates marginal						

differences (p<0.10)

Fire Behavior/Effects: winter vs. summer

Table 4-4 Fire behavior and effects between summer (July) and winter (Feb) burning of masticated palmetto/gallberry pine flatwoods.

	Fire Behavior		Consumpti	ion	Overstory Fire Effects				
	Flame Ht	ROS	Litter	Duff	Litter	Duff	Scorch	Char	Char
		in-1		1-1		0/	0/	0/	Height
	m	m min *	<i>IV</i>	g na '		-%	%	%	m
Summer	1.5 (0.1) ^a	5.9 (1.8) ^a	5.5 (1.3) ⁸	23.1 (10.1) ^{a‡}	48 (7) ^a	32 (11) ^{a≠}	25 (11) ^a	64 (9) ^{a‡}	4.7 (0.6) ^a
Winter	1.1 (0.3) ^a	3.4 (1.0) ^a	9.6 (0.9)	2.6 (1.9) ^a	71 (4) ^b	5 (3) ^a	37 (8) ^a	86 (6) ^a	5.5 (0.6) ^a
Note: Values sharing letters within columns are not statistically different (Tukey-Kramer Test, α=0.05), * indicates marginal									
difference	s (p<0.10)								

Summer (July 2010) vs. winter (Feb. 2011) Burns

Resulting Tree Mortality

DBH (cm)

Duff Consumption

Surface and Soil Heating

Longevity of treatments

MOW ONLY

Palmetto Density (% cover)

Pre Burn

Fire

(% cover)

Palmetto Density

Take Home Messages

- Mowed plus burned sites recover more slowly than burn only sites
- Mowing prior to burning reduces fire behavior (flame length, rate of spread), but shrub recovery is nearly 100% within 2 years
- Summer burns following mowing may cause more overstory mortality likely due to fine root or basal cambium damage if burns are conducted during drier conditions
- Soil heating is unlikely to reach biological mortality thresholds, even under heavy fuel loads
 - Soil nutrients, C, CEC are not significantly impacted by treatments
- Mowing may increase proportion of herbaceous ground cover, if only temporarily.
- More information is available!

Fuel Treatments in Pine Flatwoods: A Photo Series Guide

For Estimating Vegetation and Fuel Biomass Change over Time Following Mowing and Burning in Southern Pine Flatwoods Forests

Mow 1: High Pre-Treatment Palmetto Density

Site Information		Fuel Characteristics				
Location	Osceola National Forest, Columbia County, Florida		Post Mow	9 mos	1.5 yr	2.5 yr
Stand type	Mature pine flatwoods (slash and longleaf pine)					
Stand history	More than 12 years since last burned	1-hour (tons/acre)	0.2	0.2	0.3	0.1
		10-hour (tons/acre)	1.2	0.3	1.4	1.3
Overstory metrics	Tree density (per acre): 100.6	100 hours (hours (norm)		0.5		0.0
	Average height (ft): 78.2	100-hour (tons/acre)	1.1	0.5	1.1	0.0
		1,000-hour S (tons/acre)	0.0	0.0	0.0	0.0
		1,000-hour R (tons/acre)	0.0	0.0	0.0	0.0
		Duff (tons/acre)	24.7	24.4	23.0	31.0
		Duff depth (in)	1.9	1.6	1.9	2.0
		Litter (tons/acre)	6.2	5.7	5.1	6.0
		Litter Depth (in)	2.4	1.9	2.5	2.0
		Palmetto Cover (%)	25	10	50	75
		Palmetto Height (ft)	2.9	2.6	3.1	3.9
		Total Shrub Biomass (tons/	acre) 0.6	0.9	2.6	2.9
	1	5				

Mow and Burn 1: High Palmetto Density

Site Information		Fuel Characteristics					
Location Stand type	Osceola National Forest, Columbia County, Florida Mature pine flatwoods (Slash pine and Longleat pine)		Pre burn	Post burn	1 reo	1 yr	2 yrs
Stand history	More than 12 years since last burned	1-hour (tons/acre)	0,3	0.1	0.1	0.1	0.2
Overstory Metrics	Tree density (per acce): \$20.7 Average height (ft): 66.7	10-hour (tons/acre)	1.4	0.6	0.6	0.6	34
	Basal area (ft ¹ /acre): 56.4	100-bour (tons/acre)	0.0	0.0	0.0	0.0	0.0
		1,000-hour S (tons/acre)	2.1	0.0	0.0	1.3	1.5
		1,000-bour R (tons/acre)	0.0	0.0	0.0	0.5	0.0
		Duff (tons/acre)	24.0	20.9	20.9	12.6	15.6
		(Juff depth (in)	1.3	1.4	1.4	8.0	1.1
		lätter {tons/acre}	5.9	0.8	0.8	1.2	0.8
		lätter Depth (in)	2.3	0.6	0.6	0.9	0.7
		Palmetto Cover (%)	15	5	5	20	25
		Palmetto Height (ft)	2.3	0.6	0.6	2.7	2.9
		Total Shrub Biomass {tons/acre}	0.0	0.0	0.0	0.2	0.6

Osceola NF Fuels Treatment Effects Photo Guide-CONTROL

Treatment: Control Photo Date: May 2011

Location: Osceola Na	tional Forest Columbia County,
Florida	
30.2657, -82.4919	

Fuel Loading

Treatment	Control				
N	7				
	mean	5đ			
1h (Vg co ')	0.39	051			
10h (Nythe)	1.60	1 24			
100h (http:///)	0	0			
1000h \$ (higher)	0.25	0.65			
1000h R (Ng-107)	0	0			
Litter (ligna)	9.49	2.42			
Duff (vigeo')	14.60	3.39			
Shrub H-A (Ng-Nr 7	9	6			
Litter Depth (cr)	8.2	2.1			
Duff Depth(cr)	5.7	1.2			
Palmetto Cover/%	62	24			
Palmetto Height (**)	1.0	0.2			
BA (m ag 1)	19.4	60			

Osceola NF Fuels Treatment Effects Photo Guide- MOW TREATMENT

Treatment: Mow Only Treatment Date: August 2010 Photo Date: October 2010

Location: Osceola National Forest Columbia County, Florida 30.2642, -82.4920

Fuel Loading Treatment mea 1h //www 0.9 10h pages 2.29 19 100h2 1000h \$ / 0.43 024 1000h R /Mg ... Litter (%) 12.88 2.40 Duff 12.06 2.00 Shrub H-A Arg-10 Litter Depth (con Duff Depth (con 4.4 Palmetto Cover/% Palmetto Height : BA (m

Osceola NF Fuels Treatment Effects Photo Guide-BURN TREATMENT

Treatment: Burn Only Treatment Date: February 2011 Photo Date: March 2011

Location: Osceola National Forest Columbia County, Florida 30.2653, -82.4929

Fuel Loading

Treatment	Burn				
N	1	1			
	mean	bé			
1h (Ng to 1)	0.09	0.11			
10h (Ngha)	1.56	164			
100h (htp://d/)	0.27	0.60			
1000h \$ (higher)	4.09	11.83			
1000h R (Ng-50 7)	0	0			
Litter (higher)	2.22	062			
Duff (repear)	11.15	251			
Shrub H-A (kg-to)	0	30			
Litter Depth (m)	19	05			
Duff Depth <i>(m)</i>	4.0	13			
Palmetto Cover/N	18	11			
Palmetto Height (m)	05	0.1			
BA (m na)	12.6	23			

Osceola NF Fuels Treatment Effects Photo Guide- MOW + BURN TREATMENT

Treatment: Mow & Burn Date: Mow: August 2010 Burn: February 2011 Photo Date: March 2011

Location: Osceola National Forest Columbia County, Florida 30.2660, -82.4909

Treatment	Mow	Hburn
N		,
	mean	śd
1h (Ngros -)	0.21	0.1
10h (Ngha)	1.35	0.64
100h (htp:///)	0.17	050
1000h \$ (higher)	030	1.60
1000h R (Ng-ta')	0.06	0.13
Litter (ligna ')	174	050
Duff (vigeo')	10.67	3.25
Shrub H-A (sig-to)	0	0
Litter Depth (m)	15	0.5
Duff Depth <i>(m)</i>	3.7	1.7
Palmetto Cover/N	4	3
Palmetto Height (m)	03	0.2
BA (m na ')	225	103

SFE Fact Sheet 2015-1

Mechanical Treatments in Pine Flatwoods: A Temporary Rearrangement of Fuel Structure

Jesse Kreye, David Godwin, and Leda Kobziar

MECHANICAL FUEL TREATMENTS

Prescribed burning is a dominant forest management tool used across the Southeastern U.S., yet burning is often limited due to various social, ecological, or economic factors. The use of mechanical methods as a fire surrogate or as a means to treat overgrown fuels prior to reintroducing fire has become increasingly used in the region, especially in the wildlandurban-interface (WUI) and other areas with significant smoke concerns. Mechanical treatments can include thinning of the overstory, treating understory shrubs and small trees, or a combination of both. Understory treatments commonly used in the South include "mowing", "mulching", "masticating" or "chipping" (depending on the equipment used) of shrubs and small trees. While different terms are used, each treatment is aimed at transforming aerial fuels to surface fuels to reduce fire behavior. Treatments are often employed as a stand-alone option in the WUI, or are followed-up with prescribed burning where possible. While specific treatment objectives may vary, reduction of potential fire behavior attributes including flame lengths, rate of spread, and crown fire potential, are emphasized. Reducing these fire behavior factors is important to both follow-up prescribed burning and potential wildfire.

TREATMENT OF FUELS IN PINE FLATWOODS

Mowing is a common mechanical fuels treatment method especially in long-unburned pine flatwoods (ca. >10 yr. old rough) of the Southeastern Coastal Plain, where understories are dominated by saw palmetto (*Serenoa repens*) and gallberry (*Ilex glabra*) shrubs. Although understory shrubs in these stands can be very dense, mature longleaf pine (*Pinus* palustris) and slash pine (*P. elliottii*) in the overstory are often

SUMMARY

Mechanical "mowing" treatments can alter the structure and arrangement of understory and midstory fuels in pine flatwoods thereby reducing post-treatment flame lengths and rates of fire spread. Shrubs, however, can quickly recover following treatment and reduce the longevity of this effectiveness. Surface fuels resulting from the mowing of small trees and shrubs may present challenges given that long-duration combustion can occur in these compact fuels. The timing of subsequent mechanical or prescribed fire treatments may be very important for achieving management objectives.

Following treatment, fuel bed height is greatly reduced while fuel bed bulk density is substantially increased, both of which can influence fire behavior¹. Fuel beds created from mowing are mixtures of small-diameter woody fuels composed of broken sticks from shrub stems, or fractured (shredded) woody debris from larger shrub or tree stems. In pine flatwoods, the bulk of the post-mowing forest floor material is often composed of shredded saw palmetto foliar material². These pine flatwoods post-treatment fuel beds can be somewhat "fluffy" or aerated compared to mowed debris generated in forests where woody shrubs or trees dominate the understory³. Although the surface of such fuel beds may initially appear "fluffy," the lower strata of mowed fuels remain relatively dense and may become more compact over time.

Thank you- questions?

Longevity of mowing effects: Shrubs and Surface Fuels

Small-Scale Fire Behavior Experiment

May 2010

Temp:	28-34°C
RH:	46-63%
Wind:	0.3-1.8 m ⁻¹

Kreye et al. 2011. International Journal of Wildland Fire

- Flame Length
- Rate of Spread
- Fuel consumption (%)
- Heating
 - Surface temperatures
 - soil temperatures
- Fireline Intensity (kJ·m⁻¹·s⁻¹)

Winter and Summer Burn Conditions

Table 4-3 Comparison of burning conditions (weather, overstory, and fuels) between a summer and winter burn in masticated palmetto/gallberry pine flatwoods of northern Florida, USA.

				Burning Cor	nditions		
	Burn Date	Temp I °C	RH W % k	/indspeed m [.] hr ^{.1}	Litter Moisture %	KBDI	
Summer	28 Jul 2010	31-34 (61-76 1.	.6-7.2	14.7 (1.1) ^a	425	
Winter	23 Feb 2011	23-24 4	47-49 1.	.6-2.7	12.1 (0.6) ^{a‡}	107	
				Oversto	ory		
	Tree Density	Basal Area	a (QMD	Height	CBH	
-	tph	<i>m</i> ²		cm	m	m	•
Summer	290 (27) ^a	23.1 (3.0)°	32	2.0 (2.6) ^a	23.3 (0.9) ^a	15.8 (0.8)	a
winter	307 (64)"	18.9 (4.4)"	2	7.8 (1.6)"	21.0 (0.7)	14.7 (0.9)	-
				Understory	Fuels		
	Shrub Height ¹	Sh	rubs	5	Shrub Foliage		
_	cm			Mg ⁻ ha ⁻	1		
Summer	69 (7) ^a	0.9	(0.5)°	(0.5 (0.2)°		
Winter	58 (13)"	0.6	(0.3) ^a	(J.4 (0.2)ª		
Surface Fuels							
	Litter Depth	Duff Depth	Litter	Duff	1 h Marbe ⁻¹	10 h	100 h
Summer	4.9 (0.7) ^a	5.3 (0.8) ^a	10.9 (1	.6) ^a 58.8 (9	$(1.0)^{a}$ $(1.0)^{a}$	6.6 (0.6) ^a	2.5 (1.1.) ^a
Winter	6.0 (0.4) ^a	3.5 (0.6) ^a	13.4 (0.	.9) ^a 38.8 (6	(0.2) ^a 1.1 (0.2) ^b	2.1 (0.3) ^b	1.1 (0.6) ^a
Note: Values sharin	ng letters within	columns are	e not statis	tically different	ent (Tukey-Kramer	Test, α=0.05), [‡] indicates marginal

differences (p<0.10)

Post treatment Litter Moisture Content

Live (shrubs) Moisture Content

 $\overline{0}\overline{0}\overline{0}$

, <mark>|</mark>

07/21/11

Treatment

burn

control

mowłbum

mow

Mowing → Shrubs/Small Trees

TST (months)

Density (individuals/ha) TST (months)

Strubs

Species Richness