Ecological Considerations for Forested Peat Wetlands: Meeting Biological Objectives at the Landscape Scale

Sara Ward, USFWS Raleigh Field Office Chuck Hunter, USFWS Southeast Regional Office MFWFCC Symposium – November 19, 2013

Overview

- Introduction
 - Landscape conservation design
 - Proxy species as tool to develop objectives
- Habitat condition and spatial targets for forested wetland species indicators
- Management tools for to meet habitat targets
 - Fire
 - Hydrology
 - Forestry

Emerging carbon markets to facilitate delivery

Summary

Landscape-Scale Conservation Design (LCD)

■ **Goal**: Functioning landscapes that support sustainable fish and wildlife populations in viable ecosystems now and into future

Challenges:

- Water and energy demands
- Anticipated climate change impacts
- Habitat loss
- Economic realities

HOW? Focus resources on biological outcomes to maximize conservation results

Finding Efficiencies: Conservation by Proxy

Surrogate species (e.g., focal, umbrella, indicator, representative, keystone)

- With partners, establish conservation objectives for priority species and their habitats
- Target conservation actions to meet objective
- Measure outcomes
- Adaptive management

Strategic Habitat Conservation Elements: Credit: USFWS.

Implications for forested wetlands: how do we choose how much to do what and where?

- Recovery Plans for Threatened and Endangered Species
- Migratory Bird Conservation Plans (NAWMP, Flyway, PIF, Shorebirds, Waterbirds)
- State Wildlife Action Plans, TNC Ecoregional Plans, etc.
- Landscape Conservation Collaboratives (emerging blueprint, resource indicators/targets)

\equiv

Canebrake

Bay Pocosins

Atlantic White Cedar Forest

Ecological Suites

Swainson's Warbler

Prothonotary Warbler
Hooded Warbler
Wood Thrush
Acadian Flycatcher

Habitat Spatial Targets

Goal: 500 Pairs

Forest Blocks 10-20,000 acres, assuming substantial unsuitable habitat is included in estimate

Black-throated green warbler

Cerulean warbler Kentucky Warbler Summer Tanager Yellow-billed Cuckoo Eastern Wood-Pewee

Goal: 500 Pairs

Forest Blocks 20-100,000 acres same as above

Red-shouldered Hawk

Swallow-tailed Kite Broad-winged Hawk Pileated Woodpecker Cooper's Hawk

Goal: 80-100 Pairs

Forest Blocks 100-400,000 acres

Pond Pine Pocosin

Habitat spatial targets for other priority open pine woodland species

Goal: 500 pairs/coveys/family groups

Red-cockaded Woodpecker > 125,000 acres*

Red-headed Woodpecker ~ 25,000-50,000 acres

Brown-headed Nuthatch ~ 15,000-30,000 acres

Bachman's Sparrow ~ 15,000-30,000 acres

Northern Bobwhite ~ 10,000-20,000 acres

Pond Pine Pocosin

^{*} Acreages assume substantial areas included that are unsuitable for these species

Black bear habitat and area requirements (Rudis and Tansey 1995 JWM)

Habitat Conditions

- Forested wetlands and surrounding uplands
- Adequate den sites (large trees or dry ground with very dense understory)
- Forest openings to support adequate soft mast production

Habitat Spatial Targets

Goal: 50 Adults 18,000 to 200,000 acres

Goal: 200 Adults 70,000 to 800,000 acres

Goal: 1,000 Adults 350,000 to 4,000,000 acres

Red Wolf

Red wolf habitat and area requirements

Habitat Conditions

- Forested wetlands and surrounding uplands
- Adequate den sites (open view from den, higher ground)
- Conditions that support prey base (whitetail deer, small mammals)
- Tolerant human interaction

Habitat Spatial Targets

Goal: 220 Adults

Spatial need unknown, but bear spatial targets* suggest:

More than 800,000 acres

- * Significant bear/wolf differences:
- Social structure
- 2 canids in landscape
- Prey base
- Human interactions

Management tools to deliver population-level habitat targets

Hydrology

Forestry

Pre-alteration pocosin fire

- Frequency: return
 interval determined by
 soil type, depth, water
 table and plant
 community among other
 factors
- Severity: mostly above ground fire; water table protective effect

CELLS 33-64: SEVERELY NUTRIENT-LIMITED SITES

AWC forest

FIRE FREQUENCY (in Frost, 1995¹)

		1-3 YEARS	4-6 YRS	7-12 YRS	13-25 YRS	26-50 YRS	51-100 YRS	100-300 YRS	NEVER BURNED
DEPTH	Seasonally wet mineral soils	Species-rich wet prairie sim. cell 1. ARST, PLTE, SPTE, CTAR, TORA	Species-rich wet preirie, dwarf shrubs	Wet prairie, MYCE, ILGL	Thicket of dense, small PISE, PIEL, NYBI, bay forcat/shrubs	Dense ACRU,NYBI, LIST, PISE, PIEL/MAVI, PEPA/Shrubs	PISE forest PIEL, ACRU, LIST/MAVI, PEPA/ ferns	TADL ACRU NYBI, swamp herbs	TADI, NYBI, ACRU
	ROW 1	CELL 33	CELL 34	CELL 35	CELL 36	CELL 37	CELL 38	CELL 39	CELL 40
TTER DE	Soils with thin organic layers, 10-30 cm	Diverse wet prairie and bog gramin- oids, forbs, and insectivorous	Wet prairie with insectivorous plants and dwarf shrubs	Low or medium pocosin	Medium pocosin	Tall pocosin, PISE forest, bay forest	PISE forest, NYBI & ACRU forest, bay forest	TADI, NYBI/ swamp herbs	TADI, NYBI/ swamp herbs
A.	thick ROW 2	plants CELL 41	CELL 42	CELL 43	CELL 44	CELL 45	CEL 10	CELL 4	CELL 48
ORGANIC MA	Shallow histosols, 30-100 cm thick	Open bog with pitcher plants, dwarf shrubs, graminoids	Low pocosin with pitcher plants, other bog species. CELL 50	Low or medium pocosin CELL 51	Scrubby PISE/ medium pocosin CELL 52	PISE-GOLA forest, bay forest with PEPA, MAV ACRU CELL 53	Patch mosaic: PISE-GOLA forest, CHTH forest, TADI/ ACRU, NYBI forest, bay for. CELL 54	Patch mosaic: CHTH forest, TADI/ACRU forest, NYBI forest, bay forest CELL 55	TADI in wet swamps, ycling ACRU rest in p utlands (topothetical) C LL 56
©	Deep histosols, peat deeper than 1 m	Open bog with pitcher plants, grasses and sedges, dwarf shrubs	Low pocosin, with pitcher plants, other bog species	Low pocosin	Low pocosin	Low or med m pocosin	Medium pocosin (hypothetical)	Tall pocosin, PISE-GOLA forest, bay forest (hypothetical)	TDI in wet cramps, yeling red maple forest in peatlands (hypothetical)
	ROW 4	CELL 57	CELL 58	CELL 59	CELL 60	CELL 61	Ch. 52	CELL, 6"	CELL 64

SPECIES ACRONYMS: ACRU: Acer rubrum (Red Maple), ANGL: Andropogon glomeratus, ARGI: Arundinaria gigantea (Cane), ARST: Aristida stricta (Wiregrass), CHTH: Charnaccyparis thyoides (Atlantic White Cedar), CLJA: Cladium jamaicense (Sawgrass), CLMO Cliftonia monophylla (Black Titi), CTAR: Ctenium aromaticum (Toothache Grass), CYRA: Cyrilla recemiflora (Titi), FRCA: Fraxinus caroliniana (Water Ash), FRPE: Fraxinus pennsylvanica (Red Ash), GOLA Gordonia lasianthus (Loblolly Bay), ILGL: llex glabra (Gallberry), LIST: Liquidambar styraciflus (Sweet Gum), MAVI: Magnolia virginiana (Sweet Bay), MYCE: Myrica cerifera (Wax Myrtle), NYAQ: Nyssa aquatica (Tupelo or Water Gum), NYBI: Nyssa biflora (Swamp Black Gum), PEPA: (Persea palustris (Red Bay), PIEL: Pinus elliottii (Slash Pine), PITA: Pinus taeda (Loblolly Pine), PLTE: Pleca tenuifolia, SPTE: Sporobolus teretifolius, TAAS: Taxodium ascendens (Pond Cypress), TADI: Taxodium distichum (Baldcypress) TORA: Tofieldia racemosa (False Asphodel).

¹Frost, Cecil C. 1995. Presettlement fire regimes in southeastern marshes, peatlands, and swamps. Pg 39-60 in S.I. Cerulean and R.T. Engstrom, eds. Fire in wetlands: a management perspective. Proc. of the Tall Timbers Fire Ecol. Conf., No. 19. Tall Timbers Res. Station, Tallahassee, FL.

Canebrake

FIRE FREQUENCY

	1								
		1-3 YEARS	4-6 YRS	7-12 YRS	13-25 YRS	26-50 YRS	51-100 YRS	100-300 YRS	NEVER BURNED
ORGANIC MATTER DEPTH	Seasonally wet mineral soils	Species-rich wet prairie with graminoids and grass-leaved forbs CELL 1	Species- rich wet prairie, with dwarf shrubs	ANGI ARGI, LIA, ILGL, CYRA, CLMO tree and ngs CELL.	Small ACRU NYBI, LIST, PISE, PITA, PIEL, TAAS	Dense ACRU, NYBI, TAAS, LIST, PISE, PITA, PIEL/ ARGI, Shrubs	PITA, PIEL, TAAS, QUMI, PISE, ACRU, LIST/ sparse ARGI, ferns CELL 6	TADI, FRPE, LIST, ACRU, NYBI, QUMI other bottomland oaks/mesophytic herbs CELL 7	TADI, NYBI, FRPE, LIST, ACRU, bottom- land onks
	Soils with thin organic layers, 10- 30 cm thick	Wet prairie and bog graminoids and forbs, patches of ARGI, ANGL	Dense cancle ake	Alternating canebrake and pocosin	ACK PITA, IVEL, TAAS, LLVV ARGI CELL 12	PISE, PITA, PIEL, TAAS, LIST, NYBI/ PEPA, MAVI	PISE forest, PITA, PIEL, TAAS, bottomland hardwoods, bay forest CELL 14	TADI, NYBI, FRPE, LIST, PITA/ ACRU, FRCA/ Carex, swamp herbs	TADI, NYAQ, NYBI/ ACRU, FRCA, ULAM/ swamp shrubs, herbs
	Shallow histosols, 30-100 cm thick	Open bog with dwarf shrubs, graminoids, pitcher plant short cane, mosses CELL 17	Dense canebrake	Alternating canebrake and pocosin	PISE/ canebrake, alternating with PISE- ACRU tall pocosin CELL 20	Patch mosaic: PISE forest, ACRU forest, CHTH forest, ay forest with EPA, MAVI	Putch mosaic: CHTH forest, TADI/ACRU forest, PISE forest, NYBI forest, bay for. CELL 22	Extensive CHTH forest and patch mossic as in Cell 22 CELL 23	TADI in wet swamps, cycling ACRU forest in peatlands (hypothetical) CELL 24
#	Deep histosols, pest deeper than 1 m	Open bog with iow shrubs, pitcher plants, grasses and sedges	Canebrake or Low pocosin with ANGL, ad bog bods	Alternating canebrake and pocosin, or medium to tall pocosin	Tall pocosin with PISE, GOLA, ACRU; PISE forest, bay forest, CH H patch my sic	Patch mosaic of types seen in Cell 22	Extensive CHTH forests and patch mosaic of types seen in cell 22	Extensive old growth CHTH forests and patch mosaic of types in cell 22	TADI in wet swamps, cycling ACRU forest in peatlands (hypothetical)
	ROW 4	CELL 25	CEI 26	CEL1, 27	CELL 8	CELL 29	CFLL 30	CELL.31	CELL 32

SPECIES ACRONYMS: ACRU: Acer rubrum (Red Maple, ANGL: A copoon glomeratus, ARGI: Arundinaria gigantea (Cane), CHTH: Characecyparia thyoides (Atlantic White Cedar), CLJA: Cladium jamaicense (Sawgrass), CLMO Cliftonia monophylla (Black Titi), CYRA: Cyrilla racemiflora (Titi), FRCA: Fraxinus caroliniana (Water Ash), FRPE: Fraxinus pennsylvanica Red Ash), GOLA: Gordonia Insianthus (Loblolly Bay), ILGL: Ilex glabra (Gallberry), LIST: Liquidambar styraciflus (Sweet Gum), MAVI: Magnolia virginiana (Sweet Bay), MYCE: Myrica cerifera (Wax Myrtle), NYAQ: Nyasa aquatica (Tupelo or Water Gum), NYBI: Nyasa biflora (Swamp Black Gum), PEPA: Persea palustris (Red Bay), PIEL: Pinus elliottii (Slash Pine), PITA: Pinus taeda (Loblolly Pine), TAAS: Taxodium ascendens (Pond Cypress), TADI: Taxodium distichum (Baldcypress).

Eastern NC umbrella species in forested wetlands: range of fire return cycles

Older-growth with 50-300 year return interval (e.g., Atlantic white-cedar)

■ Black-throated Green Warbler

Require dense understories, likely 25-100 year return (both pond pine and bay pocosin, cane or hardwood)

- Swainson's Warbler
- Hooded Warbler

Require dense cover for denning and recent burns for prey

- Black Bear
- Red Wolf

Require pond pine clear of hardwoods in canopy (26-100 yrs)

- Red-cockaded Woodpecker
- Brown-headed Nuthatch
- Red-headed Woodpecker

Wildfire frequency/severity greater than pre-alteration regime

Why??

In a word...drainage!

- Historically:
 - Summer water table drawdown (up to 1 m+1) in domed peat caused some peat fire; rewetting regularly occurred
 - Seasonal soil saturation limited ground fire potential; allowed vegetation to burn (necessary in pocosin ecosystems)
- Now:
 - Extensive drainage network limits duration of seasonal flooding
 - Water table is lowered; peat is aerated/drier
 - Drainage prevents even significant rainfall (tropical) retention on landscape
 - Much more frequent ground fire; significant soil loss

Management tools to deliver population-level habitat targets

Fire

Hydrology

Forestry

Above ground fuel reduction not always enough...need to address fire vulnerability of peat soils

Hydrology restoration

- Raises water table
- Allows water storage before (prevention) and during (suppression) wildfires
- Permits above ground fire for habitat and fire management with less risk

Water Management Capability

Approach:

- Install water control structures and culverts
- Use raised roads along the canals as levees
- Re-saturate historically drained areas via rainfall
- Manage to desired conditions

Peatland Restoration Stops Soil Carbon Loss

Drained Condition

Loss of carbon by oxidation (SOURCE)

Restored Condition

Carbon sequestration

(SINK)

Carbon partnerships can accelerate our restoration efforts

Emerging C Markets for "Rewetted" Peatlands

- In NC, sequestration driver is amount of carbon retained that would be lost via oxidation without restoration ("stop loss")
- We used literature to derive site-specific sequestration estimates

200 lb/ac/year of N

6500 lb/ac/year of C

To date, restoration at Pocosin Lakes NWR sequesters ~194,000 metric tons of CO₂/yr

Management tools to deliver population-level habitat targets

Fire

Hydrology

Forestry

Management tools: forestry

Young Forest

Dense canopy, small diameter trees, little understory

How do we move young forest structure to more old forest structure faster?

Maturing Forest

Some canopy opening, more understory diversity

Other forestry considerations

- AWC reintroduction
- Pine plantations conservation lands of future?
- Potential for carbon sequestration to be tool to advance scale and delivery of projects

Summary

- Population objectives for umbrella species can inform landscape conservation design
- With spatial targets in place, manage for biologically-driven range of habitat conditions
- Fire and hydrology management should be considered in concert to meet goals
- Market-based incentives (e.g., carbon sequestration) as emerging tool to meet future landscape goals

