Ecological Considerations for Forested Peat Wetlands: Meeting Biological Objectives at the Landscape Scale Sara Ward, USFWS Raleigh Field Office Chuck Hunter, USFWS Southeast Regional Office MFWFCC Symposium – November 19, 2013 # Overview - Introduction - Landscape conservation design - Proxy species as tool to develop objectives - Habitat condition and spatial targets for forested wetland species indicators - Management tools for to meet habitat targets - Fire - Hydrology - Forestry Emerging carbon markets to facilitate delivery Summary # Landscape-Scale Conservation Design (LCD) ■ **Goal**: Functioning landscapes that support sustainable fish and wildlife populations in viable ecosystems now and into future ## Challenges: - Water and energy demands - Anticipated climate change impacts - Habitat loss - Economic realities HOW? Focus resources on biological outcomes to maximize conservation results # Finding Efficiencies: Conservation by Proxy Surrogate species (e.g., focal, umbrella, indicator, representative, keystone) - With partners, establish conservation objectives for priority species and their habitats - Target conservation actions to meet objective - Measure outcomes - Adaptive management Strategic Habitat Conservation Elements: Credit: USFWS. # Implications for forested wetlands: how do we choose how much to do what and where? - Recovery Plans for Threatened and Endangered Species - Migratory Bird Conservation Plans (NAWMP, Flyway, PIF, Shorebirds, Waterbirds) - State Wildlife Action Plans, TNC Ecoregional Plans, etc. - Landscape Conservation Collaboratives (emerging blueprint, resource indicators/targets) #### \equiv # Canebrake # **Bay Pocosins** # Atlantic White Cedar Forest ### **Ecological Suites** #### Swainson's Warbler Prothonotary Warbler Hooded Warbler Wood Thrush Acadian Flycatcher ## **Habitat Spatial Targets** #### Goal: 500 Pairs Forest Blocks 10-20,000 acres, assuming substantial unsuitable habitat is included in estimate #### Black-throated green warbler Cerulean warbler Kentucky Warbler Summer Tanager Yellow-billed Cuckoo Eastern Wood-Pewee #### Goal: 500 Pairs Forest Blocks 20-100,000 acres same as above #### Red-shouldered Hawk Swallow-tailed Kite Broad-winged Hawk Pileated Woodpecker Cooper's Hawk #### **Goal: 80-100 Pairs** Forest Blocks 100-400,000 acres # Pond Pine Pocosin # Habitat spatial targets for other priority open pine woodland species ### Goal: 500 pairs/coveys/family groups Red-cockaded Woodpecker > 125,000 acres* Red-headed Woodpecker ~ 25,000-50,000 acres Brown-headed Nuthatch ~ 15,000-30,000 acres Bachman's Sparrow ~ 15,000-30,000 acres Northern Bobwhite ~ 10,000-20,000 acres Pond Pine Pocosin ^{*} Acreages assume substantial areas included that are unsuitable for these species # Black bear habitat and area requirements (Rudis and Tansey 1995 JWM) ### **Habitat Conditions** - Forested wetlands and surrounding uplands - Adequate den sites (large trees or dry ground with very dense understory) - Forest openings to support adequate soft mast production ## **Habitat Spatial Targets** Goal: 50 Adults 18,000 to 200,000 acres Goal: 200 Adults 70,000 to 800,000 acres Goal: 1,000 Adults 350,000 to 4,000,000 acres # **Red Wolf** # Red wolf habitat and area requirements ### **Habitat Conditions** - Forested wetlands and surrounding uplands - Adequate den sites (open view from den, higher ground) - Conditions that support prey base (whitetail deer, small mammals) - Tolerant human interaction ### Habitat Spatial Targets #### Goal: 220 Adults Spatial need unknown, but bear spatial targets* suggest: ### More than 800,000 acres - * Significant bear/wolf differences: - Social structure - 2 canids in landscape - Prey base - Human interactions # Management tools to deliver population-level habitat targets Hydrology Forestry # Pre-alteration pocosin fire - Frequency: return interval determined by soil type, depth, water table and plant community among other factors - Severity: mostly above ground fire; water table protective effect #### CELLS 33-64: SEVERELY NUTRIENT-LIMITED SITES # **AWC forest** #### **FIRE FREQUENCY** (in Frost, 1995¹) | | | 1-3 YEARS | 4-6 YRS | 7-12 YRS | 13-25 YRS | 26-50 YRS | 51-100 YRS | 100-300 YRS | NEVER
BURNED | |------------|--|---|---|--|---|---|--|--|--| | DEPTH | Seasonally
wet
mineral
soils | Species-rich
wet prairie
sim. cell 1.
ARST, PLTE,
SPTE, CTAR,
TORA | Species-rich
wet preirie,
dwarf shrubs | Wet prairie,
MYCE, ILGL | Thicket of
dense, small
PISE, PIEL,
NYBI, bay
forcat/shrubs | Dense
ACRU,NYBI,
LIST, PISE,
PIEL/MAVI,
PEPA/Shrubs | PISE forest
PIEL, ACRU,
LIST/MAVI,
PEPA/ ferns | TADL ACRU
NYBI, swamp
herbs | TADI, NYBI,
ACRU | | | ROW 1 | CELL 33 | CELL 34 | CELL 35 | CELL 36 | CELL 37 | CELL 38 | CELL 39 | CELL 40 | | TTER DE | Soils with
thin
organic
layers,
10-30 cm | Diverse wet
prairie and
bog gramin-
oids, forbs, and
insectivorous | Wet prairie
with
insectivorous
plants and
dwarf shrubs | Low or
medium
pocosin | Medium
pocosin | Tall pocosin,
PISE forest,
bay forest | PISE forest,
NYBI &
ACRU forest,
bay forest | TADI, NYBI/
swamp herbs | TADI, NYBI/
swamp herbs | | A. | thick
ROW 2 | plants
CELL 41 | CELL 42 | CELL 43 | CELL 44 | CELL 45 | CEL 10 | CELL 4 | CELL 48 | | ORGANIC MA | Shallow
histosols,
30-100 cm
thick | Open bog with
pitcher plants,
dwarf shrubs,
graminoids | Low pocosin
with pitcher
plants, other
bog species.
CELL 50 | Low or
medium
pocosin
CELL 51 | Scrubby
PISE/
medium
pocosin
CELL 52 | PISE-GOLA
forest, bay
forest with
PEPA, MAV
ACRU
CELL 53 | Patch mosaic:
PISE-GOLA
forest, CHTH
forest, TADI/
ACRU, NYBI
forest, bay for.
CELL 54 | Patch mosaic:
CHTH forest,
TADI/ACRU
forest, NYBI
forest, bay
forest
CELL 55 | TADI in wet
swamps,
ycling ACRU
rest in
p utlands
(topothetical)
C LL 56 | | © | Deep
histosols,
peat
deeper
than 1 m | Open bog with
pitcher plants,
grasses and
sedges, dwarf
shrubs | Low
pocosin,
with pitcher
plants, other
bog species | Low pocosin | Low pocosin | Low or med m
pocosin | Medium
pocosin
(hypothetical) | Tall pocosin, PISE-GOLA forest, bay forest (hypothetical) | TDI in wet
cramps,
yeling red
maple forest in
peatlands
(hypothetical) | | | ROW 4 | CELL 57 | CELL 58 | CELL 59 | CELL 60 | CELL 61 | Ch. 52 | CELL, 6" | CELL 64 | SPECIES ACRONYMS: ACRU: Acer rubrum (Red Maple), ANGL: Andropogon glomeratus, ARGI: Arundinaria gigantea (Cane), ARST: Aristida stricta (Wiregrass), CHTH: Charnaccyparis thyoides (Atlantic White Cedar), CLJA: Cladium jamaicense (Sawgrass), CLMO Cliftonia monophylla (Black Titi), CTAR: Ctenium aromaticum (Toothache Grass), CYRA: Cyrilla recemiflora (Titi), FRCA: Fraxinus caroliniana (Water Ash), FRPE: Fraxinus pennsylvanica (Red Ash), GOLA Gordonia lasianthus (Loblolly Bay), ILGL: llex glabra (Gallberry), LIST: Liquidambar styraciflus (Sweet Gum), MAVI: Magnolia virginiana (Sweet Bay), MYCE: Myrica cerifera (Wax Myrtle), NYAQ: Nyssa aquatica (Tupelo or Water Gum), NYBI: Nyssa biflora (Swamp Black Gum), PEPA: (Persea palustris (Red Bay), PIEL: Pinus elliottii (Slash Pine), PITA: Pinus taeda (Loblolly Pine), PLTE: Pleca tenuifolia, SPTE: Sporobolus teretifolius, TAAS: Taxodium ascendens (Pond Cypress), TADI: Taxodium distichum (Baldcypress) TORA: Tofieldia racemosa (False Asphodel). ¹Frost, Cecil C. 1995. Presettlement fire regimes in southeastern marshes, peatlands, and swamps. Pg 39-60 in S.I. Cerulean and R.T. Engstrom, eds. Fire in wetlands: a management perspective. Proc. of the Tall Timbers Fire Ecol. Conf., No. 19. Tall Timbers Res. Station, Tallahassee, FL. ### **Canebrake** #### FIRE FREQUENCY | | 1 | | | | | | | | | |----------------------|--|--|---|--|---|--|---|--|---| | | | 1-3 YEARS | 4-6 YRS | 7-12 YRS | 13-25 YRS | 26-50 YRS | 51-100 YRS | 100-300 YRS | NEVER
BURNED | | ORGANIC MATTER DEPTH | Seasonally
wet mineral
soils | Species-rich wet prairie with graminoids and grass-leaved forbs CELL 1 | Species-
rich wet
prairie,
with dwarf
shrubs | ANGI
ARGI, LIA,
ILGL,
CYRA,
CLMO
tree and ngs
CELL. | Small ACRU
NYBI, LIST,
PISE, PITA,
PIEL, TAAS | Dense ACRU,
NYBI, TAAS,
LIST, PISE,
PITA, PIEL/
ARGI, Shrubs | PITA, PIEL,
TAAS, QUMI,
PISE, ACRU,
LIST/ sparse
ARGI, ferns
CELL 6 | TADI, FRPE,
LIST, ACRU,
NYBI, QUMI
other bottomland
oaks/mesophytic
herbs
CELL 7 | TADI, NYBI,
FRPE, LIST,
ACRU, bottom-
land onks | | | Soils with
thin organic
layers, 10-
30 cm thick | Wet prairie and
bog graminoids
and forbs,
patches of
ARGI, ANGL | Dense cancle ake | Alternating
canebrake and
pocosin | ACK
PITA, IVEL,
TAAS, LLVV
ARGI
CELL 12 | PISE, PITA, PIEL, TAAS, LIST, NYBI/ PEPA, MAVI | PISE forest, PITA, PIEL, TAAS, bottomland hardwoods, bay forest CELL 14 | TADI, NYBI,
FRPE, LIST,
PITA/ ACRU,
FRCA/ Carex,
swamp herbs | TADI, NYAQ,
NYBI/ ACRU,
FRCA, ULAM/
swamp shrubs,
herbs | | | Shallow
histosols,
30-100 cm
thick | Open bog with
dwarf shrubs,
graminoids,
pitcher plant
short cane,
mosses
CELL 17 | Dense
canebrake | Alternating
canebrake and
pocosin | PISE/
canebrake,
alternating
with PISE-
ACRU tall
pocosin
CELL 20 | Patch mosaic:
PISE forest,
ACRU forest,
CHTH forest,
ay forest with
EPA, MAVI | Putch mosaic:
CHTH forest,
TADI/ACRU
forest, PISE
forest, NYBI
forest, bay for.
CELL 22 | Extensive
CHTH forest
and patch
mossic as in
Cell 22
CELL 23 | TADI in wet
swamps,
cycling ACRU
forest in
peatlands
(hypothetical)
CELL 24 | | # | Deep
histosols,
pest deeper
than 1 m | Open bog with
iow shrubs,
pitcher plants,
grasses and
sedges | Canebrake
or Low
pocosin
with
ANGL,
ad bog
bods | Alternating
canebrake and
pocosin, or
medium to
tall pocosin | Tall pocosin with PISE, GOLA, ACRU; PISE forest, bay forest, CH H patch my sic | Patch mosaic
of types seen
in Cell 22 | Extensive
CHTH forests
and patch
mosaic of
types seen in
cell 22 | Extensive old
growth CHTH
forests and patch
mosaic of types
in cell 22 | TADI in wet
swamps,
cycling ACRU
forest in
peatlands
(hypothetical) | | | ROW 4 | CELL 25 | CEI 26 | CEL1, 27 | CELL 8 | CELL 29 | CFLL 30 | CELL.31 | CELL 32 | SPECIES ACRONYMS: ACRU: Acer rubrum (Red Maple, ANGL: A copoon glomeratus, ARGI: Arundinaria gigantea (Cane), CHTH: Characecyparia thyoides (Atlantic White Cedar), CLJA: Cladium jamaicense (Sawgrass), CLMO Cliftonia monophylla (Black Titi), CYRA: Cyrilla racemiflora (Titi), FRCA: Fraxinus caroliniana (Water Ash), FRPE: Fraxinus pennsylvanica Red Ash), GOLA: Gordonia Insianthus (Loblolly Bay), ILGL: Ilex glabra (Gallberry), LIST: Liquidambar styraciflus (Sweet Gum), MAVI: Magnolia virginiana (Sweet Bay), MYCE: Myrica cerifera (Wax Myrtle), NYAQ: Nyasa aquatica (Tupelo or Water Gum), NYBI: Nyasa biflora (Swamp Black Gum), PEPA: Persea palustris (Red Bay), PIEL: Pinus elliottii (Slash Pine), PITA: Pinus taeda (Loblolly Pine), TAAS: Taxodium ascendens (Pond Cypress), TADI: Taxodium distichum (Baldcypress). # Eastern NC umbrella species in forested wetlands: range of fire return cycles Older-growth with 50-300 year return interval (e.g., Atlantic white-cedar) ■ Black-throated Green Warbler Require dense understories, likely 25-100 year return (both pond pine and bay pocosin, cane or hardwood) - Swainson's Warbler - Hooded Warbler Require dense cover for denning and recent burns for prey - Black Bear - Red Wolf Require pond pine clear of hardwoods in canopy (26-100 yrs) - Red-cockaded Woodpecker - Brown-headed Nuthatch - Red-headed Woodpecker # Wildfire frequency/severity greater than pre-alteration regime # Why?? # In a word...drainage! - Historically: - Summer water table drawdown (up to 1 m+1) in domed peat caused some peat fire; rewetting regularly occurred - Seasonal soil saturation limited ground fire potential; allowed vegetation to burn (necessary in pocosin ecosystems) - Now: - Extensive drainage network limits duration of seasonal flooding - Water table is lowered; peat is aerated/drier - Drainage prevents even significant rainfall (tropical) retention on landscape - Much more frequent ground fire; significant soil loss # Management tools to deliver population-level habitat targets Fire Hydrology Forestry # Above ground fuel reduction not always enough...need to address fire vulnerability of peat soils ## Hydrology restoration - Raises water table - Allows water storage before (prevention) and during (suppression) wildfires - Permits above ground fire for habitat and fire management with less risk # Water Management Capability # Approach: - Install water control structures and culverts - Use raised roads along the canals as levees - Re-saturate historically drained areas via rainfall - Manage to desired conditions # Peatland Restoration Stops Soil Carbon Loss ### **Drained Condition** Loss of carbon by oxidation (SOURCE) #### **Restored Condition** Carbon sequestration (SINK) Carbon partnerships can accelerate our restoration efforts # Emerging C Markets for "Rewetted" Peatlands - In NC, sequestration driver is amount of carbon retained that would be lost via oxidation without restoration ("stop loss") - We used literature to derive site-specific sequestration estimates 200 lb/ac/year of N 6500 lb/ac/year of C To date, restoration at Pocosin Lakes NWR sequesters ~194,000 metric tons of CO₂/yr # Management tools to deliver population-level habitat targets Fire Hydrology Forestry # Management tools: forestry #### **Young Forest** Dense canopy, small diameter trees, little understory How do we move young forest structure to more old forest structure faster? ### **Maturing Forest** Some canopy opening, more understory diversity # Other forestry considerations - AWC reintroduction - Pine plantations conservation lands of future? - Potential for carbon sequestration to be tool to advance scale and delivery of projects # Summary - Population objectives for umbrella species can inform landscape conservation design - With spatial targets in place, manage for biologically-driven range of habitat conditions - Fire and hydrology management should be considered in concert to meet goals - Market-based incentives (e.g., carbon sequestration) as emerging tool to meet future landscape goals